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ABSTRACT 

It is shown that for every space with an unconditional basis there exists a 
uniformly hounded sequence of projections Pn; n = 1, 2 .... whose ranges are 

n 
u n i f o r m l y  i s o m o r p h i c  to  lp ;  n = 1 ,2 ,  ... e i t h e r  for  p = I ,  o r p  = 2, o r  fo r  

p = o o .  

By now the spaces lp; p > 1 and Co have been studied in quite some detail and 

certainly they are the best known Banach spaces. This explains why, among the 

most interesting problems of the geometric theory of Banach spaces, we find 

questions related to the existence of subspaces isomorphic to c o or Ip; p __> 1, or to 

the existence of finite-dimensional subspaces isomorphic to l~o or to lg, for all 

n > 1. The profoundest result in this direction is undoubtedly that of Dvoretzky 1-2] 

which shows that every infinite-dimensional Banach space contains subspaces 

almost isometric to l); n = 1, 2,. . . .  

Theorem 1 proved in this paper shows that, in a certain sense, Dvoretzky's 

result can be considerably improved in the case of spaces having an unconditional 

basis. Before stating Theorem 1 let us point out that the notation and terms used 

here are standard (for additional details see [4]). For the convenience of the 

reader we recall that two Banach spaces X and Y are called isomorphic if there 

exists an invertible operator from X onto Y. The Banach-Mazur distance coef- 

ficient d(X, Y) of two isomorphic Banach spaces X and Y is defined by 

infll T l l .  ]1T -1 11, where the infimum is taken over all invertible operators T 

from X onto Y. 

THEOREM 1. Let X be an infinite-dimensional Banach space with an uncon- 
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p ditional basis (xn}. Then there exist a constant M and a sequence ( ,}n=l of 

projections in X such that for all n = 1,2,... li Pn II <- M and d(P,X, l~) < M 

either for p = 1, or for p = 2, or for p = oo. 

Before beginning the proof we shall make a few comments: (i) The infinite 

version of Theorem 1 is false in general; there are examples of spaces with un- 

conditional basis (even Orlicz sequence spaces) which contain no complemented 

subspace isomorphic to either Co or to lp; p __> 1 (refer to [3]). (ii) It is well known 
2 n �9 and easily seen that 12~ contains a subspace isometric to 11 and that l~ contains a 

subspace close to l~. This explains the claim that Theorem 1 generalizes the 

afore-mentioned theorem of Dvoretzky (in the case of spaces having an un- 

conditional basis). However, the proof given here is quite elementary and does 

not involve any of the difficult arguments used in [2]. 

NOTE. It should be pointed out that our proof does not produce subspaces 

almost isometric to l~, only subspaces whose distance from l~ is bounded by some 

constant independent of n. 

We start by recalling a recent result (Proposition 2) of Brunel and Sucheston [1]. 

For the sake of completeness we present here its proof which is based on the 

following well-known combinatorial result of Ramsey [6]. 

PROPOSITION 2. Let m and n be positive integers and ~ a function defined 

on the unordered tuples of n different integers taking values in the set (1, 2, ..., m}. 

Then there exists an infinite subset N o of positive integers such that the restriction 

of ~ to the tuples constructed using only the elements of N o is constant. 

PROPOSITION 3. Let Y be a Banach space with a normalized monotone 

Schauder basis (y~}. Then, for every ~ > 0 there exist a sequence of positive reals 
�9 O0 O0 { (J)}j=t and a sub-basic sequence (z~ = Yn,},=I such that 

0 <  cj)- JI zk, + zk2 + + II 

for every set of indices j < kl < k2 < "" < k/; j = 1,2,. . . .  In addition, 2(j) 

< 2(m) + 8 for j < m. 

PROOF. For every integer k > 1 we consider a fixed partition 

~(k) = k + 1 2(o k) = 1 < ~.(1 k) < 2(2 k) < . . .  < ~,(k) 

with the property that ~(k) ~r - i  - -  '~i-1 < e; j = 1, 2, "" s(k); k = 1,2,. . ' .  Once the 

partition has been chosen we define a function q~k from all the unordered tuples 
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of k different integers into the numbers {1, 2,.. . ,  s(k)}, by setting ~0k({nt, n2, ' " ,  nk}) 

= j i f  =< I[ y,, + y,2 + " +  II < k'. 
Let N = N tl~ denote the set of  all positive integers and 2(1) = 1. Applying 

Proposition 2 to the function ~P2 we obtain an infinite subset of  integers N TM c N r 

(on which ~2 is constant) and a number 2(2) which is defined as follows: if ~2, 

restricted to pairs of integers from N c2~, is equal to j then 2(2) = 2~ 2). Again we 

apply Proposition 2, this time for the function ~03 restricted to tuples constructed 

with the elements of N (2). In this way we obtain another infinite subset of integers 

N TM ~ N (2) (on which ~3 is constant) and a number 2(3) such that ~03 restricted to 

N (3~ is equal to j where 2) s) = 2(3). 

Continuing so and using a standard diagonal argument for 

N = N ( I ) ~ N ( 2 ) ~ N ( a ) ~ ' " ~  N'~k)~"" 

we construct an infinite subsequence of positive integers {nl < nz < "'" < n~ < ...} 

and a sequence of  positive reals {2(j)}~_. t having all the properties required in the 

statement of Proposition 3. The last assertion follows from the monotony of the 

basis. 

�9 ~ao Z o0 PROPOSmON 4. Fix 0 < e < 1 in Proposition 3 and let {2(j)}j=t and { i}i=t 

be the two sequences defined there. Assume the existence of an integer h > 1 

such that 

2(hn) ~ 1 + e; n = 1,2, .- . .  
2(n) 

Then there exist a constant A and a number q > 2 such that 

lajZm+,l 12(n) <= A [aj 
y 1 

for  every n = 1,2, . . . ;  m >  n; 0 < k ~  < k 2  < "" <k~ and every sequence of 

scalars {at, a2,... ,  an}. 

PROOF. First, we choose r > 2 such that 1 < htl'< 1-F 8. Then we have 

2(hn)/2@) > h~/'; n = 1, 2, ..-, which implies 

2(h'n)_ - ~  :, (h~)llr; n,s = 1,2,....  

Now, if ~ > fl are two integers and h t-1 < �9 ~ hi; h j -1  < fl _g h l, for some 
i and j ,  then either i > j and 
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> hi-J-I)1~,> 4h2/, 
2(~) > 1 
1(p) =(I + &  

or i = j and 

l(h t - l )  1 1(hI-J-lh 1) 
> -  

2(h j) = 4 1(hi) 

t ( p )  = ?2 = ~ ~,h ' -~1  >= 

Thus, in both  cases, we have 

2(~) > 1 (~_) ' / ' .  
i(/~) = 4 ~  

Set q > r a n d  A = 16h2/'/(1 - q' /r') ~/q', where l [q + 1/q '= 1 and 1/r + 1/r ' 

= 1. Fix integers n < m and k~ < k2 < "" < k,. Then, for every set of  coefficients 

aj; j  = 1,2, . . . ,n,  we have 

n j r  1 II = s=l  I 

where aj=(b~' ) -b~2))+i(b~3)-b~4)) ;  j = l , 2 , . . . , n  and 0_-_q)_-<[ajl; 
s = 1 ,2 ,3 ,4 ;  j = 1 ,2 , . . . ,n .  

Let ~]]=1 b~ z,,+k j be any of  these four sums where 0 < bj < I a j l ; j  = 1, 2, . . . , , .  
Let n be a permutat ion of  the integers {1,2, ..., n} so that b,(~) > b~(2) > "" > b,(,) 

~ 0. Then, 

11 n 

J=l  J 

-<_ (b,,<l)- b.(2))1(1) + (b . (2 ) -  b,,(3))1(2) + " "  + (b.( ._ 1) - b . ( . ) )2 (n-  1) + b,~(.)2(n). 

Thus, 

Using the fact that j u ,  _ (j _ 1)1/, < 1/(.jr~,.') and applying Holder ' s  inequality 

for q and q '  we obtain 
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~ " U 4h2;' ~ b"u' 5", biz.,+k j /).(n) < 
*~j=l  " = n l / r  J llr~ 

J = l  

<= nil, Ib,,,, ~, t =, Jq'/"] 

< 4h2l'n '1---'7 j=,~ l a'l" 1 -- q ' /r ' ]  " n(t-'tt/r')tllq') 

the last inequality being obtained by integrating the function 1/x r between 

0 and n. Therefore 

" ( ) ' / '  II 4h2" ~ lajl.  /n'lq 
_,bjz,,+k~ / 2 ( n ) <  ( 1 - q ' / r ' )  llq' 1=1 

and this proves completely the proposition. 

PROPOSITION 5. Let V be a 2"-dimensional Banach space #enerated by a 

system of vectors {v,, Va, "", v2.}. Suppose there exist constants K > 1 and p > 2 

such that 

' I I / = I !  K- '  l a ,]p, (2.)tip < II X air i I! X v i 
\ 1 = 1  j = l  I t j = l  

< K la, l" (2")'/" 
\ J = l  

for every set of scalars aj; j = 1,2, ...,2" (where 1/p + 1/p' = 1). Then there is 

a constant M = M(K,p),  dependin9 only on K and p (that is, independent of 

V and n), and a projection P in V such that I]P ][ < M and d(PV, ID <= M. 

PROOF. Let Za denote the characteristic function of a set 6 : [0,1]. 

{ : ( 2 h - 2 ) 2 " - k + l < = j < = ( 2 h - 1 ) 2  "-k 

Put 8kJ = -- (2h - 1)2"-k+ 1 < j  _--< 2h "2 "-k 

for j = 1,2,. . . ,2", k = 1,2, . . . ,n, and h = 1,2, . . . ,2 k- l .  Consider the functions 

2 n 

rk = E ekjZtU_l)n,,l/2,]; k = 1 ,2 , . . . ,n  

and the vectors 
2 n 

wk = ~-, ekjvj; k = 1,2, . . - ,n.  
J - - I  

One can easily recognize that {ri, r2, ..-, 1",} are exactly the first n Rademacher 
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functions on [0, 1] while {wl, w2, ..., w,} forms the so-called Rademacher system 

in V. (This terminology as well as some ideas used in the proof are taken from 

[5].) 

By the well-known Khintchin inequality there is, for every r > 1, a constant K, 

depending only on r and such that for every choice of ak 

where [Ifll, denotes the norm of a function f i n  L,(0, 1). It follows immediately that 

12 <: akW , Z v, I < KK,  Ink K-  1K; ' [ a k _ = 
1 = t  ' , 1 = ,  = 

which shows that d(W, l~) < K 2 KpKr where W = span I ~_k~, {Wk}" 
NOW, let Q be the orthogonal projection in L2(0,1) whose range is 

span1Zk_~, {rk} ; it is well known that Q acts as a bounded linear projection in every 

L,(0, 1); r > 1 (see, for example, [4 II.3.c]) and the norm }1Q II, of a in L,(0,1) is 

independent of n. If 

then we set 

P ( ~  a l v l )=  ~ bkWk �9 
\ j = l  k = , 

One can easily check that the mapping P, defined in this manner, is a linear 

projection in V whose range is exactly W. Moreover, 

2 n n 2 n 

( ~ lay [p')1/p,/(2.)l/p' < IIQ 1' [[1=, 
\ j = '  

In conclusion we have just shown that IIP 1] --- M and d(PV, l~) ~_ M where 

u =  I1Q llo," K 2 . K .  K,,. 
PROOF OF THEOREM 1. We start by assuming, with no loss of generality, that 

the unconditional constant of {x,} is equal to I. 
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Fix 0 < 8 < 1; then, using Proposition 3 for {x,} as well as for {x*} (the sequence 

of  the biorthogonal functionals associated to {x~}) we can construct two sequences 

of  reals {2(j)}j~l and {/z(j)}~'.~ l, and two subsequences {z, = x~,}i~a and 

so that 

{z* = x*}~'., 

o < , ( j ) -  II zZ + zr2 + "" + z:, II < ~  

for every set of indices satisfying j < k~ < kz < "" < kj; j = 1,2, .... 

We shall distinguish three cases. 

Case I. For every integer h > 1 there exists an integer n = n(h) such that 

2(hn)/2(n) < 1 + e. In this case, after fixing h and n = n(h), we shall consider 

the following vectors: 

u t = (Zh~ + 1 + " "  + Zh~ + ~ ) / 2 ( n )  

u2 = (z~+~+t+ "" + zhn+2~)/2(n) 

U h = (Zhn+(h_l )n+ 1 all" . . . . . ~  Zhn+hn)/~t(n).  

Then, using the fact that the unconditional constant of {xn} is equal to 1 and 

II u, II--- ~;~ -- 1,2, ..., h, we have 

( ) II �89 maxla,[_-< __E a,u,[ ~_ max[a,I �9 1~ u, 
l~_l~_h i 1 \l~_l~_h l f f i l  

= (max  [ a , [ ) ' U  '~zh'+~tl/2(n) < ( m a x l a , [ )  2 ( h n ) < 2  m a x [ a , [ .  
\l~_i~_h J = l  - -  \ l ~ l _ _ . h  A ( n )  - -  l ~ | ~ h  

This shows that d(Xh, l~) < 4, where Xh = spanl_t_h{ui}. Since l| is an injective 

space it follows immediately that there are projections Ph in X such that PhX = Xh 
and [IPhH < 4 ;  h = 1,2,.--. 

Case II. For every h > 1 there exists an integer n = n(h) such that 

lt(hn) lit(n) < 1 + e. Using the results obtained in Case I we first establish that for 

{Yl, Y2, "", Yn } in which have disjoint supports every h there are functionals * * * X* 

(relative to the basis {xn}) and such that 

h 

�89 max [a,l__< ~=a,y* [__<2max [at] ,  
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for every choice of {al}. 

Choosing now vectors y~eX;  i = 1,2, . . . ,h such that the support of  y~ is 

contained in that of y*; [I Y, [I = 1 and 2 > y*" y, > �89 i = 1,2, ... ,h, we have 

___4 
i 1 I : 1  i 1 i : 1  i :  

which shows that d(Yh, l~)-< 4, where 

x 6 X, let us define 
h 

PhX = ~, 
i--1 

Yh = spanl-<i__.h {Yi}. Furthermore, for 

y*(x) 
y~-~,)y ,. 

Then Ph is a projection from X onto Yh for which 

ly*(x)l ( ~  sgny*(x) .~ 
II P,x II -< x, ~ )  = ,-, yV~ y' ) x -< 41I x I1. 

i .e.,again IIP, II-<4; h = 1,2,... 

Case III. If  both the conditions characterizing Cases I and II do not hold we 

can apply Proposition 4 to both X and X* thus obtaining constants B > 1 and 

p > 2 such that, simultaneously, 

[[j~,lalz,,+jll/2(n)< B a, " 'l'/n'/" 
and I = 

ll,~ a,z*.,,,l/~'(")<=B(j~.la, l')"'/n'' 
for every n = 1, 2,... and for every choice of {a j}. 

Fix n and let x = Y-,~=I bj z,+j be a vector in X such that II x II = I and 

n /I 

Z z*+. = Z by. 
j~*l J jff i l  

Choose an integer C such that C > (8B) g. If 

ri = {j; l <=j<= n; lbj] >= 82~n) } 

and s is the number of the elements of t/then n > Cs. Indeed, if n < Cs then 

2(n) < 2 Z Zcs+j] < 2 __< 2C2(s) 
1=1  

which contradicts the fact that 

1 --Ilxll ~ x Ibj lz .§ > 8c z.§ > 4C 2(n)" j , .  = 2(n) 
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Using the fact that sin < 1/C and the second inequality characterizing Case III 

we have 

Hence 

"(:) ~ ~ II z zr+,U/,,(,,) __ ~B 
/~(n) "s  = 

2B 1 
~ c-~ <~. 

~(n) 

that is, 

,.,,,, . )  s : i  2 - ~  + 2  ~ bj_~ 16C n + 2 Zn+ j X 
j ,i 

n n 14n) 
__< 16C 2 - ~  + 2p(s) < 16C,-7--7- + --y- 

,~t n) 

n o p(n) _~ 32C ~-77v_,, n = 1,2, .... 
,~t n) 

Consequently, for 1/p + 1/p' = 1, we have 

~ /It ~ U = aj)Zn + j 
1 j = l  I " J = l  

1 nllp la, (k, la, 
' ~"> (~ la, l")'"' 

~- 32BC n lip' s=l 

We complete the proof of Theorem 1 by applying Proposition 5 since B, C and p 

are independent of n. 

ADDED IN PROOF 

1. Brunel and Sucheston, On J-convexity and some ergodic super-properties 

of Banach spaces (to appear), have proved that for every infinite dimensional 

Banach space X there exists an infinite dimensional Banach space Y which has 

an unconditional basis and which is finitely representable in X (i.e., for every 

e > 0 and every finite dimensional subspace Yo of Y there exists a subspace Xo 

of X such that d(Xo, Yo) < 1 + e). This result combined with Theorem 1 and 

the remarks thereafter give a new and elementary proof of a slightly weaker 

version of Dvoretzky's thorrem [2]: Every infinite dimensional Banach space 

contains subspaces uniformly isomorphic to l~z; n = 1,2,.... 

2. W. B. Johnson, On finite dimensional subspaees of Banach spaces with 

local unconditional structure (to appear), has shown independently that when 
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X is not  uniformly convexifiable then Theorem 1 holds with p = 1 or p = oo 

(possibly also with p = 2). 
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